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INTRODUCTION

Micropaleontology and biostratigraphy play vital roles for
deciphering the stratigraphic record produced by changes in
relative sea level, interpreting the history of global sea-level
change, and testing models for the causes of sea-level fluctuations
due to the variable influences of tectonics, glacio-eustasy, and
climate. The stratigraphic architecture developed in response to
changing eustasy, accommodation space, and sediment supply
along continental margins (e.g., Haq et al., 1988; Abreu and
Haddad, 1998; Hardenbol et al., 1998; Miller et al., 1998) can be
interpreted using the tools of marine micropaleontology. Planktic
and benthic foraminifera provide chronostratigraphic control
and a wealth of paleoenvironmental information for the recogni-
tion of depositional systems tracts that develop in response to
changes in relative sea level.

Neritic benthic foraminifera have long been used to interpret
paleobathymetry, and hence changes in sea level, because recur-
rent onshore–offshore trends in assemblage composition and
diversity characterize many terrigenous continental margins (e.g.,
Parker, 1948, 1954; Said, 1950; Ellison, 1951; Phleger, 1951, 1956;
1960, 1964; Phleger and Parker, 1951; Bandy, 1953, 1956; Bandy
and Arnal, 1957, 1960; Upshaw and Stehli, 1962; Walton, 1964;
Murray, 1973, 1991; Boltovskoy and Wright, 1976; Buzas and
Culver, 1980; Ingle, 1980; Poag, 1981; Culver and Buzas, 1981,
1983a, 1983b, 1999; Lutze and Coulbourn, 1983/1984; Culver,
1988; Olson, 1990; Sen Gupta, 1999). Q-mode cluster analysis
based on percentage data of samples is a common tool to distin-
guish groups of samples, or biotopes (e.g., inner, middle, and
outer neritic and upper bathyal). R-mode cluster analysis based
on percentage frequency of species in the samples can be used to
distinguish assemblages of species, or biofacies, each character-
ized by one or more dominant species (e.g., Gevirtz et al., 1971;
Lutze and Coulbourn, 1983/1984; Lagoe et al., 1997; Buck et al.,
1999). See Parker and Arnold (1999) for a review of quantitative
methods of data analysis in foraminiferal ecology.

Here we briefly review some of the salient oceanographic
features of terrigenous shelves in terms of the complex and
dynamic environmental variables responsible for producing
depth-related assemblages of benthic and planktic foraminifera.
We emphasize studies of modern benthic and planktic foramin-
iferal ecology that provide valuable insights into the original
biocoenoses (life assemblages) of the upper reaches of the conti-

nental margin, those most sensitive to sea-level change, while
acknowledging the significant role that taphonomic and
postdepositional processes play in modifying these life assem-
blages. Our goal is to present an overview of how foraminiferal
sediment assemblages can be used to track changes in relative sea
level. This review includes a discussion of marginal marine,
neritic, and upper bathyal foraminiferal biofacies, benthic and
planktic foraminiferal ecology with a special emphasis on the
importance of seasonality, water masses, and productivity in
influencing biocoenoses, as well as paleoecological tools that can
be used to decipher temporal and spatial changes in foraminiferal
assemblages including planktic:benthic ratios, diversity indices,
and similarity coefficients. We also present a generalized model
of microfossil response to changing sea level as applied to a
sequence stratigraphic (or genetic stratigraphic) framework. The
sea-level proxies discussed here focus on siliciclastic systems, but
many of the basic paleoecologic and biostratigraphic principles
have broader utility in studies of mixed siliciclastic–carbonate
depositional systems.

FORAMINIFERAL BIOFACIES AND THEIR
RELATIONSHIP TO SEA-LEVEL CHANGE

Marginal Marine Biofacies

Agglutinated (foraminifera, thecamoebians) and calcareous
(foraminifera, ostracodes) microfossils occur abundantly in mar-
ginal marine depositional systems including salt marshes, estu-
aries, and lagoons. The pioneering work of Scott and colleagues
(Scott and Medioli, 1980; Scott et al., 1980; Scott et al., 1990; Scott
et al., 1991; Scott et al.; Scott et al., 1996; Medioli and Scott, 1983)
delineated the distributional patterns of modern temperate-salt-
marsh agglutinated foraminifera and established their utility in
identifying paleo–sea level based on the recognition of high-
marsh assemblages. For example, the association of Trochammina,
Jadammina, and Miliammina is diagnostic of salt marshes around
the world. Additional research by other workers has focused on
environmental and taphonomic controls on marsh foraminiferal
distribution, as well as the implications of foraminiferal distribu-
tions in sea-level reconstruction (e.g., Goldstein, 1988; Williams,
1989, 1994; Scott and Leckie, 1990; DeRijk, 1995; Goldstein et al.,
1995; Ozarko et al., 1997; Saffert and Thomas, 1998; Goldstein and
Watkins, 1999; Horton et al., 1999a, 1999b; Patterson et al., 1999;
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Hippensteel et al., 2000; Lloyd, 2000; Horton and Edwards, this
volume; Martin et al., this volume; Nikitina et al., this volume).

Modern foraminifera of lagoons, bays, estuaries, and fjords
often show distributions related to the influence of salinity,
temperature, dissolved oxygen, substrate, and seasonality (e.g.,
Phleger, 1960; Buzas, 1965, 1969, 1974; Murray, 1968; Ellison,
1972; Jones and Ross, 1979; Poag, 1981; Alve, 1990; Patterson,
1990; Green et al., 1993; Culver et al., 1996). For example, the
agglutinated genera Ammobaculites, Miliammina, and Ammotium
are common and, in places, constitute nearly monogeneric fora-
miniferal assemblages in the muddy substrates of the upper
reaches of estuaries, river mouths, and brackish lagoons and bays
(e.g., Ellison, 1972; Buzas, 1974; Poag, 1981; Alve, 1990; Lloyd,
2000). The agglutinated genera Eggerella and Eggerelloides occur in
the lower reaches of estuaries and in some brackish bays (Murray,
1968, 1991). Calcareous taxa such as Ammonia and Elphidium
frequently dominate modern foraminiferal assemblages in the
lower reaches of estuaries, and in normal marine lagoons and
bays (e.g., Murray, 1968, 1991; Poag, 1981). Like the Trochammina–
Jadammina–Miliammina association of salt marshes, the diagnos-
tic agglutinated genera of modern estuaries, lagoons, and bays
have been shown to characterize these same marginal marine
depositional systems at least as far back as the Cenomanian–
Turonian (Late Cretaceous; Tibert et al., this volume). Ostracodes
are also useful for distinguishing marginal marine facies because
of their sensitivity to temperature and salinity, and because of
their ubiquitous and often abundant distribution in these envi-
ronments (e.g., De Deckker, 1981; Horne, 1983; Forester and
Brouwers, 1985; Cronin, 1988; Neale, 1988; Whatley, 1988; Tibert
et al., this volume).

Neritic Biofacies

Studies of the modern distributions of benthic foraminifera
along terrigenous margins have demonstrated the usefulness of
distinguishing biofacies on the basis of predominant genera
rather than species (e.g., Walton, 1964; Murray, 1973, 1991; Poag,
1981; Culver, 1988). Benthic foraminiferal biofacies generally
trend parallel to the shore and slope, and reflect the influence of
changing substrate, water clarity, turbulence, sedimentation
rate, seasonality, temperature, food availability, and dissolved
oxygen with increasing depth and distance from the shoreline
(Fig. 1). The same physical processes and environmental vari-
ability responsible for the distribution of modern assemblages
were likewise responsible for controlling ancient depth-depen-
dent and distance-from-shore-dependent assemblages.

For example, at a coarse level, four major paralic–upper
bathyal biofacies can be recognized in data on benthic foramin-
iferal distribution from the northern Gulf of Mexico margin
(Poag, 1981; Culver, 1988). These biofacies are distinguished on
the basis of the greatest genus-level differences between the
original seven biofacies of Culver (1988) and include: (1) marginal
marine (marsh–estuarine–lagoon), (2) inner to middle neritic
(marginal marine to ~ 100 m water depth), (3) outer neritic (~ 100
m to 150–200 m), and (4) upper bathyal (> 150–200 m) (Fig. 2).
Such broad generic biofacies analogues, or “predominance fa-
cies” of Poag (1981), are applicable to ancient terrigenous assem-
blages back to at least the Late Cretaceous (e.g., Sliter and Baker,
1972; Nyong and Olsson, 1983/1984; Olsson and Nyong, 1984;
Sikora and Olsson, 1991; Kominz and Pekar, 2001; Pekar and
Kominz, 2001; Li et al., this volume; Tibert et al., this volume).

FIG. 1.—Schematic representation of the dynamic physical and biological characteristics of a siliciclastic shelf and upper slope. These
characteristics help to shape the composition of foraminiferal communities.
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Cushman (1948) and Boltovskoy and Wright (1976), among
others, recognized the importance of temperature in explaining
the distinctly zonal biogeographic pattern of neritic benthic
foraminiferal communities (see also Parker, 1948; Gevirtz et al.,
1971; Culver and Buzas, 1999, 2000). The boundaries between
these latitudinally delineated foraminiferal provinces, as well
as many of the major benthic macrofaunal province boundaries,

are located at coastal headlands and are associated with bound-
aries between surface water masses (e.g., Boltovskoy, 1976;
Culver and Buzas, 1999). Planktic foraminifera, like other plank-
ton, also display roughly zonal biogeographic distribution pat-
terns reflecting the major surface ocean currents, as well as
latitudinal changes in temperature, seasonality, and productiv-
ity (e.g., Bé and Tolderlund, 1971; Bé, 1977; Vincent and Berger,

FIG. 2.—Summary of general benthic foraminiferal biofacies trends observed across the northern Gulf of Mexico. Benthic
foraminiferal depth zonations are based on Culver (1988). General depth distributions of selected benthic foraminiferal
genera are based on persistence within each depth zone (i.e., genera are not necessarily restricted to these zones).
Predominance facies of the Gulf of Mexico are based on Poag (1981). In addition to these widespread biofacies, there are
several restricted predominance facies off the Mississippi River delta, including Epistominella, Nonionella, Nouria, and
Goesella. Amphistegina is concentrated on submerged carbonate banks, and the Miliolid–Archaias-Homotrema predominance
facies characterizes reefs (Poag, 1981). Values of percent planktic foraminifera (relative to total foraminifera) are based on
the data presented by Gibson (1989).
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1981; Hemleben et al., 1989; Leckie, 1989; Rutherford et al.,
1999).

In reconstructing the biogeography of modern benthic fora-
minifera of the continental margins of North America and Cen-
tral America, Culver and Buzas (1999) emphasized the fact that
the compositional differences between shallow-water (< 200 m)
and deep-water (> 200 m) communities of the same latitude were
greater than those of adjacent neritic communities. The boundary
separating neritic and bathyal foraminiferal provinces approxi-
mates the position of the modern shelf break, and is itself an
important transition in the physical, chemical, and biological
character of the water column (Fig. 1). Oceanographic variability
across the outer shelf and upper slope includes salinity and
temperature structure, tidal currents and mixing, wind-driven
upwelling and productivity, seasonal flux of organic matter, as
well as dissolved oxygen content in the water column and at the
seafloor (e.g., Mann and Lazier, 1991). Therefore, the boundaries
between stratified water masses may represent one of a number
of important variables in delineating depth-related biogeographic
provinces such as the boundary that typically occurs at the shelf–
slope transition (e.g., Streeter, 1973; Culver and Buzas, 1981,
1983a, 1983b; Poag, 1981; Denne and Sen Gupta, 1991, 1993, this
volume).

Development of Modern Biofacies Distributions

During Jurassic and Early Cretaceous time, assemblages
above the CCD were often characterized by diverse representa-
tives of the Nodosariacea, Spirillinacea, Epistominidae,
Opthalmidiidae, Buliminidae, or assemblages dominated by
simple agglutinated taxa (e.g., Bartenstein and Brand, 1937;
Loeblich and Tappan, 1950; Bartenstein et al., 1957; Lutze, 1960;
Seibold and Seibold, 1960; Gordon, 1970; Luterbacher, 1972;
Kuznetsova, 1974; Gradstein, 1978; Kuznetsova and Seibold,
1978; Sliter, 1980; Copestake and Johnson, 1981; Shipp and
Murray, 1981; Exton and Gradstein, 1984; Riegraf et al., 1984).
The mid-Cretaceous (Aptian–Cenomanian) was a time of rapid
evolution of benthic foraminifera, particularly calcareous
trochospirally coiled taxa, and the differentiation of “depth”
assemblages bearing an ever-increasing resemblance to the
modern (e.g., Sliter, 1980; Loeblich and Tappan, 1988; Sikora
and Olsson, 1991; Kaiho, 1998). The observed radiation of cal-
careous benthic foraminifera was likely due to a number of
factors: (1) rising global sea level and the creation of broad
shelves and epicontinental seas, (2) episodes of increased pro-
ductivity and expansion of oxygen minima along continental
margins, particularly during oceanic anoxic events, (3) changes
in paleogeography, water-mass sources, and ocean circulation,
and (4) increased water-column stratification and vertical dif-
ferentiation of water masses (Sikora and Olsson, 1991; Kaiho,
1998, 1999b; Leckie et al., 2002). As a result, vast new neritic and
bathyal niche space was created.

Cooling of the high latitudes and the growth of ice sheets
during the Cenozoic caused the shallow seas to withdraw from
the continents, but it also increased meridional temperature
gradients and further accentuated the vertical gradients of the
water column (Cifelli, 1969; Lipps, 1970). As zones of productiv-
ity became more focused and water-mass contrasts along the
continental margins became sharper, the biofacies that became
established during the Cretaceous were likewise constricted by
the narrowing neritic ecospace. The well-defined biofacies of
terrigenous margins today are in part the product of often
sharp, but seasonally dynamic, vertical and horizontal oceano-
graphic gradients (Fig. 1). As sea level changed in the past,
benthic foraminiferal assemblages migrated laterally across the

shelf and upper slope with the shifting water-mass fronts and
depositional environments.

Relationship of Sea-Level Change to
Biofacies Continuity and Taxonomic Extinction

Buzas and Culver (1994) studied shelf foraminifera from a
succession of six Cenozoic formations deposited in a large em-
bayment of the U.S. Atlantic Coastal Plain (Delaware to North
Carolina) in order to determine where the species originate and
where they migrate with rising and falling sea level, and to
determine if neritic communities behave as a coherent unit over
geologic time. An important result of their research is that there
is very little community unity from one transgressive–regressive
sequence to the next; only a small proportion of species returned
to this sizeable embayment with each ensuing transgression.
Despite the ephemeral nature of neritic benthic foraminiferal
communities, the associations of genera, in particular, define
distinctive biofacies (Buzas and Culver, 1994). They concluded
that this East Coast depositional embayment contained a subset
of a much larger shallow-water community and that “immi-
grants and emigrants shuffled back and forth to the species pool
while extinctions and originations continually altered its species
composition” (Buzas and Culver, 1994, p. 1441). Similar trends
have been shown to characterize the upper Oligocene (Li et al.,
this volume) and Miocene (McGowran and Li, 1996; Li and
McGowran, 1997) of southern Australia. Here, too, neritic biofacies
assemblages are strongly sequential (ongoing change) rather
than recurrent at the third order (106 yr).

Environmental changes, often associated with fluctuating
sea level, including changes in temperature, dissolved oxygen,
and/or productivity, have been shown to result in extinctions
and/or changes in community structure. For example, neritic
and bathyal foraminiferal communities responded to major
global perturbations such as the mid-Cretaceous oceanic anoxic
events (Eicher and Worstell, 1970; Jarvis et al., 1988; Koutsoukos
et al., 1990; Kaiho, 1994b; Culver and Buzas, 2000; Holbourn and
Kuhnt, 2001; Holbourn et al., 2001), the Cretaceous–Tertiary
boundary event (Keller, 1988, 1992; Kaiho, 1992; Coccioni and
Galeotti, 1994; Speijer and Van der Zwaan, 1996; Kaiho et al.,
1999; Alegret et al., 2001), and the Paleocene–Eocene Thermal
Maximum [the Late Paleocene Thermal Maximum is now called
the Paleocene–Eocene Thermal Maximum] (Kennett and Stott,
1991; Speijer et al., 1996, 1997; Thomas and Shackleton, 1996;
Kaiho, 1999b). With regard to the mid-Cretaceous oceanic an-
oxic events, rising sea level may have triggered or amplified
global environmental changes by flooding continental areas,
creating new deep or intermediate water masses, altering ocean
circulation and productivity, and modulating planetary albedo
and climatic feedbacks (e.g., Erbacher et al., 1996; Erbacher et al.,
1998; Erbacher et al., 1999; Hilbrecht et al., 1996; Leckie et al.,
1998; Leckie et al., 2002; West et al., 1998; Gale et al., 2000; Tibert
et al., this volume). Two studies in this volume demonstrate that
Pennsylvanian–Permian shallow-water fusulinacean evolution
(extinction and speciation) was closely related to eustatic sea-
level change (Davydov et al., this volume; Ross and Ross, this
volume).

PLANKTIC FORAMINIFERAL ECOLOGY AND
PLANKTIC:BENTHIC RATIO SIGNALS

Sediment assemblages of fossil planktic foraminifera provide
useful information about the nature of the ancient uppermost
water column, including temperature, stratification, and pro-
ductivity. Like many other oceanic organisms, most species of
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modern planktic foraminifera are adapted to relatively narrow
ranges of temperature and salinity (Bé, 1977; Hemleben et al.,
1989). Planktic foraminiferal simple diversity is greatest in well-
preserved sediment assemblages deposited under normal-
salinity waters of the low to mid-latitudes where seasonal or
year-round temperature gradients in the upper water column
provide a variety of trophic and density-specific niches (Lipps,
1979; Leckie, 1989; Hallock et al., 1991; Leckie et al., 2002). Sedi-
ment assemblages that accumulate under ecotones, areas of the
ocean where two surface water masses meet or where water-mass
fronts shift seasonally, may actually have slightly higher simple
diversity due to mixing of biocoenoses (Cifelli and Benier, 1976;
Hallock et al., 1991). Seasonal changes in the strength or position
of the thermocline are known to be fundamentally important in
maintaining marine plankton communities. For example, water-
mass stratification affects nutrient availability and recycling,
productivity, seasonal succession, reproduction, and predation
(Mann and Lazier, 1991).

Most planktic foraminiferal species live vertically stratified in
the photic zone (mixed layer and upper thermocline), where their
primary food supplies are located (Bé, 1977; Fairbanks and Wiebe,
1980; Hemleben et al., 1989; Arnold and Parker, 1999). Modern
planktic foraminifera exhibit diverse feeding strategies, and they
play important roles as both prey and predator within the trophic
pathways of plankton food webs. Some taxa contain
photosymbionts (microscopic algae, typically dinoflagellates or
chrysophytes), which confer a competitive advantage in low-
nutrient waters, where food supplies may be limited. Most of the
symbiont-bearing taxa are spinose, although not all spinose taxa
possess symbionts. Many of the modern spinose species are
known to entrap and digest metazoan zooplankton such as
copepod or larval stages of other plankton, as well as other
protozoans such as ciliates or flagellates (Hemleben et al., 1989;
Spero, 1998). Non-spinose species snare particulate organic mat-
ter (POM) with their pseudopodia. POM may consist of “marine
snow,” “phytodetritus,” or other flocs of organic detritus. In
addition to consuming POM, some of the non-spinose taxa may
actively prey on the heterotrophic bacteria that colonize and
decompose organic detritus (Lee, 1980; Lipps, 1982).

In addition to occupying diverse trophic niches, planktic
foraminifera occupy different parts of the upper water column,
and a number of species change depth habitats during ontogeny
(Bé, 1977; Hemleben et al., 1989; Arnold and Parker, 1999). Ontog-
eny refers to the growth and development as recorded by increas-
ing number of chambers, increasing test size, and other character-
istics such as spine shedding and/or secondary calcification prior
to reproduction. For example, some taxa, particularly the sym-
biont-bearing species, live in the sunlit waters of the mixed layer
for much of their brief lives before adding a secondary calcite
crust and sinking to greater depths in preparation for gametoge-
nesis (release of gametes). Gametogenesis and early growth of the
young foraminifera may occur in the vicinity of the chlorophyll
maximum (Spero, 1998), a zone near the base of the mixed layer
or upper thermocline where conditions are optimal for phy-
toplankton productivity (adequate mix of light from above and
advective nutrient supply from below). Other taxa may spend
their entire lives in the mixed layer or along some part of the
thermocline, while others live predominantly at subthermocline
depths. These latter deep-dwellers may have yearly life cycles,
while many species of planktic foraminifera have monthly repro-
duction tied into the lunar cycle (Hemleben et al., 1989; Spero,
1998). Periodic reproductive cycles coupled with gamete release
near the chlorophyll maximum provide an effective temporal
and spatial concentration mechanism to enhance reproductive
success (Hemleben and Bijma, 1994; Spero, 1998).

While some species may be perennially abundant in the near-
surface waters, many species display distinct seasonal prefer-
ences (Bé et al., 1971; Tolderlund and Bé, 1971; Deuser and Ross,
1989). Sediment-trap studies have demonstrated the seasonal
nature of planktic foraminiferal assemblages and the variable
seasonal flux of planktic foraminiferal shells to the seafloor
(Deuser et al., 1981; Thunell and Honjo, 1987; Deuser and Ross,
1989). Therefore, sediment assemblages of planktic foraminifera
on the seafloor reflect the time-averaged seasonal succession of
species and hence differing hydrographic conditions in the sur-
face waters. The seasonal succession of taxa reflects changing
water temperature, water-column density structure, and trophic
resources including seasonal changes in primary productivity.
Successions may even occur on a geologic timescale of alternating
glacial and interglacial cycles as documented by the Globorotalia
menardii index, which reaches a maximum during interglacial
periods over the last 100,000 yr in piston cores from the Gulf of
Mexico intraslope basins (Olson et al., 2000; Olson and Thomp-
son, in prep.).

Planktic foraminifera are typically absent or very rare across
much of the inner and middle shelf before rapidly increasing in
abundance (relative to total foraminifera) across the outer shelf
and upper slope (e.g., Phleger, 1951; Grimsdale and van
Morkhoven, 1955; Bandy, 1956; Stehli and Creath, 1964; Murray,
1976; Gibson, 1989; Van der Zwaan et al., 1990). For example,
Gevirtz et al. (1971) report only 1–5% planktics in ~ 210–240 ft
(64–73 m) water depth, steadily rising to > 50% by ~ 360–390 ft
(110–119 m) on the continental shelf off Long Island, New York
(along this part of the margin, the shelf break occurs at ~ 300–330
ft or ~ 91–100 m water depth). Gibson’s (1989) analysis of
planktic: benthic ratios from multiple depth transects around
the United States reveals that the middle to outer neritic
transition at ~ 100 m is characterized by 20–60% planktics and
rises to 60–90% planktics by ~ 200 m. Phleger (1960, p. 271)
cautions that because planktic foraminifera are characteristic
of “undiluted oceanic water”, planktic populations “may be as
abundant inshore as offshore” along coasts with little signifi-
cant runoff.

In the modern ocean, planktics typically constitute 80–95%
of outer neritic to mid-bathyal foraminiferal sediment assem-
blages (Fig. 2). However, elevated surface-water productivity
can significantly reduce the relative abundance of planktics.
The enhanced flux of organic matter from the surface waters to
the seafloor stimulates benthic productivity. Although the flux
of planktic foraminiferal shells is likely to be higher, there is a
greater increase in the relative abundance of benthic foramin-
ifera and other benthic organisms, including ostracodes, echi-
noderms, and sponges, thereby reducing the planktic:benthic
(p:b) ratio of the sediment assemblages (Diester-Haass, 1978;
Leckie, 1987; Berger and Diester-Haass, 1988; Herguera and
Berger, 1991; Leckie et al., 1998). Therefore, the relationship
between percent planktics and water depth across the shelf and
upper slope is not always linear and straightforward. Variabil-
ity in the p:b ratio of sediment assemblages in both slope-
parallel and onshore–offshore depth transects is often closely
related to productivity and the flux of organic carbon to the
seafloor (Van der Zwaan et al., 1990). For example, Berger and
Diester-Haass (1988) suggested that where foraminiferal popu-
lations have not been significantly altered by differential disso-
lution, the ratio of benthic-to-planktic foraminifera is a useful
proxy for productivity. However, intense upwelling and high
productivity along a continental margin can also create an
oxygen-minimum zone that may result in decreased benthic
foraminiferal abundances and hence higher p:b ratios, as shown
by the work of Naidu and Malmgren (1995).
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CHANGES IN AGGLUTINATE:
CALCAREOUS BENTHIC RATIOS

In marginal marine and neritic habitats of terrigenous mar-
gins, the salinity, alkalinity, and carbonate saturation of the
waters can greatly affect the taxonomic composition of the living
benthic foraminiferal assemblages (biocoenoses), while redox
conditions in organic-rich sediments may alter the composition
of the death assemblages (thanatocoenoses). In addition to the
loss of calcareous taxa due to post-mortem dissolution, weakly
constructed agglutinated tests contribute to the taphonomic trans-
formation of the living assemblage into a fossil assemblage
(Murray, 1973, 1991; Green et al., 1993; Martin et al., 1996; Martin,
1999; Murray and Alve, 1999). While a number of modern calcar-
eous taxa are tolerant of widely variable salinity fluctuations
found in marsh, estuarine, and lagoonal environments, such as
Ammonia and Elphidium (Murray, 1991; Sen Gupta, 1999), their
preservation potential is adversely affected by the acidic condi-
tions associated with the organic-rich substrates of these coastal
environments. Therefore, agglutinated taxa are among the best
proxies for marginal marine depositional systems, because of the
taphonomic loss of calcareous species (see Martin, 1999; Horton
and Edwards, this volume; Martin et al., this volume; Tibert et al.,
this volume).

Diverse assemblages of mixed calcareous and agglutinated
benthic foraminifera characterize the normal marine waters of
terrigenous continental shelves. Typically the transition from
brackish marginal marine habitats to open neritic conditions is
delimited by a marked increase in the abundance and diversity of
calcareous taxa (Fig. 2; Murray, 1991; Sen Gupta, 1999). This is a
very useful proxy for ancient neritic assemblages. The nearly
monogeneric estuarine agglutinated assemblages are replaced
by agglutinated genera such as Textularia, Eggerella, and
Saccammina on the inner shelf, together with diverse species of
calcareous benthics (e.g., Parker, 1948; Murray, 1968; Poag, 1981).
Modern clastic inner shelves (< 30–50 m) from cold temperate to
tropical regions are typically dominated by Elphidium (e.g., E.
excavatum) and Ammonia (e.g., A. beccarii) (e.g., Parker, 1948;
Murray, 1968; Poag, 1981; Sen Gupta, 1999; Buck et al., 1999).
However, there are exceptions. For example, along the continen-
tal shelf off Long Island, Gevirtz et al. (1971) found that aggluti-
nated taxa dominate benthic foraminiferal assemblages in water
depths of ~ 84–240 ft (~ 25–73 m).

Miliolids, calcareous benthic foraminifera with a porcellaneous
wall structure (e.g., Quinqueloculina, Triloculina), are variable
across the inner shelves of terrigenous margins because their
distribution is influenced by salinity (e.g., Bandy and Arnal, 1960;
Phleger, 1960; Gevirtz et al., 1971; Poag, 1981; Murray, 1991). For
example, biofacies with abundant Ammobaculites and few
Quinqueloculina are diagnostic of strong brackish influence such
as estuarine or deltaic environments, whereas few Ammobaculites
and abundant Quinqueloculina may characterize inner-neritic
conditions away from the direct influence of a river (Fang, this
volume). Li et al. (this volume) found miliolids to be abundant
and diverse in the ancient cool-water carbonate, inner-neritic
environments of southern Australia. Miliolids may also domi-
nate foraminiferal assemblages in warm, normal marine to hy-
persaline lagoons (e.g., Murray, 1968; Poag, 1981).

FORAMINIFERAL ABUNDANCE, DIVERSITY
AND SIMILARITY CALCULATIONS:
PROXIES FOR SEA-LEVEL CHANGE

The total number of foraminiferal tests per gram of dried
sediment is the foraminiferal number. The benthic foraminiferal

number generally increases with increasing depth across the
shelf, with peak abundance typically at, or just seaward of, the
shelf break in outermost neritic or upper bathyal waters (Parker,
1948, 1954; Bandy and Arnal, 1960; Buzas and Gibson, 1969;
Gibson and Buzas, 1973). For example, Gevirtz et al. (1971)
report 1–50 benthic specimens per gram at water depths shal-
lower than ~ 210 ft (~ 64 m) and rapidly increasing to typically
> 1000 specimens per gram by ~ 360 ft (~ 110 m). At this
particular location off Long Island, New York, the shelf break
occurs at ~ 300–330 ft, or ~ 91–100 m water depth (Gevirtz et al.,
1971). These trends could be due to several factors, including
sediment dilution nearer to shore and/or increased primary
productivity, and therefore, increased flux of organic matter out
of the photic zone near the shelf break and upper slope. The
outer-shelf assemblages may also be enriched in reworked
Pleistocene specimens because of condensation associated with
sea-level rise since the last glacial maximum.

Benthic foraminiferal biomass, and benthic biomass in gen-
eral, responds rapidly to increased availability of food (e.g.,
Diester-Haass, 1978; Leckie, 1987; Berger and Diester-Haass,
1988; Herguera and Berger, 1991; Loubere, 1991, 1997; Gooday,
1993; Jorissen et al., 1995; Thomas and Gooday, 1996; Leckie et al.,
1998; West et al., 1998; Loubere and Fariduddin, 1999). However,
excessive turbidity and high sedimentation rates off major river
systems may inhibit the development of benthic foraminiferal
communities on the inner shelf (Sen Gupta, 1999). Postdepositional
processes can also modify the original sediment assemblages on
the shelf and slope. Potential problems include: (1) downslope
displacement of shallow-water assemblages by slumping or tur-
bidity currents (recognized by bimodal distribution of taxa, and
smeared distribution), and (2) reworking of older assemblages
into younger, such as relict shelf assemblages mixed with modern
assemblages because of winnowing and condensation with ris-
ing sea level (recognized by differences in preservation or pres-
ence of older age-diagnostic taxa) (e.g., Bandy, 1953; Bandy and
Arnal, 1960; Phleger, 1960; Gevirtz et al., 1971; Murray, 1991).
Murray (1991) presents a detailed discussion of the processes of
postmortem changes to living assemblages.

Diversity of benthic foraminiferal species on terrigenous con-
tinental shelves is related to a number of variables, including
water temperature and water depth. As outlined above, how-
ever, water depth is really the product of multiple variables as
dictated by distance from shore and proximity to “blue water.”
The variables of “depth” include water clarity, benthic turbu-
lence, substrate character, water-column stratification, as well as
seasonal changes in water-mass character, organic matter flux,
and dissolved oxygen content. Benthic foraminiferal diversity
typically follows a trend similar to that of benthic foraminiferal
number.

Diversity can be described in a number of different ways. Two
common indices are simple diversity or species richness (S),
which relates to the total number of taxa present, and the Shan-
non–Wiener diversity index [H(S)]. The use of a diversity index
compensates for the patchy distribution of individual species,
particularly the rare ones (Murray, 1973, 1991). Another measure
of diversity is the Fisher alpha index (Murray, 1973, 1991). Along
terrigenous continental margins, benthic foraminiferal diversity,
both S and H(S), increase across the shelf and then remain
constant or decline in bathyal depths (Buzas and Gibson, 1969;
Gibson and Buzas, 1973). For many years, diversity described by
S has been used in a sequence stratigraphic context (Armentrout
and Clement, 1990; Armentrout, 1996) to distinguish sequence
boundaries (low S values) from flooding surfaces (high S values).
Recently, more robust diversity measurements, such as the SHE
index and the Shannon–Wiener diversity index, have been em-
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ployed to relate changes in diversity to sea-level variations de-
rived from sequence stratigraphy (Buzas and Hayek, 1996, 1998;
Wakefield, this volume; Fang, this volume). For example,
Wakefield (this volume) found that evenness [ln(E)] is at a mini-
mum at the sequence boundary and increases with ln(S) and H(S)
associated with flooding surfaces; ln(E) reaches a maximum at
the maximum flooding surface within a depositional cycle (see
discussion below related to sequence stratigraphy).

Olson et al. (this volume) explored a new application of the
similarity coefficient in a stratigraphic context. In this technique,
coefficients are calculated to compare stratigraphically adjacent
samples on the basis of the number of foraminiferal species in
common to both samples and/or the relative proportions of those
species. These values are then plotted against depth in the section
to form a biostratigraphic similarity curve based on taxonomic
assemblages. A significant change in foraminiferal assemblages
(faunal break) is marked by a low degree of similarity on the
curve. Curves calculated for specific groups, such as planktic and
benthic foraminifera, assist in interpreting the breaks in faunal
similarity. For example, similarity breaks in the benthic foramin-
iferal record are often indicative of detailed bathymetric changes,
even within the same biofacies group (see Olson et al., this
volume, for specific examples).

BENTHIC FORAMINIFERAL MICROHABITATS:
RESPONSE TO ORGANIC CARBON FLUX

AND DISSOLVED OXYGEN

Corliss and colleagues (Corliss, 1985, 1991; Corliss and Chen,
1988; Corliss and Emerson, 1990; Corliss and Fois, 1991) demon-
strated a relationship between test morphology and microhabitat
preference within sediments. They distinguished epifaunal taxa
characterized by plano-convex, biconvex, or rounded trochospiral
tests, and infaunal taxa characterized by rounded planispiral,
flattened ovoid, tapered and cylindrical triserial, or flattened and
tapered biserial tests. These authors noted that the relative abun-
dance of infaunal taxa is greater with increasing flux of organic
carbon. This relationship has also been observed in other studies
(e.g., Kaiho, 1994a, 1999a; Jorissen et al., 1995). In addition,
numerous studies of living benthic foraminifera have demon-
strated that most trochospirally coiled species inhabit the upper
few centimeters of the sediment and would be classified as
epifaunal or shallow infaunal (Corliss, 1985, 1991; Kaiho, 1994a).
However, Linke and Lutze (1993) stress that the actual microhabi-
tats of benthic foraminifera are much more dynamic than sug-
gested by Corliss’ original models.

Organic-carbon flux and dissolved oxygen are important
controls on the distribution and abundance of benthic foramin-
ifera (e.g., Phleger and Soutar, 1973; Douglas, 1981; Sen Gupta et
al., 1981; Lutze and Coulbourn, 1983/1984; Corliss, 1985; Corliss
and Chen, 1988; Loubere, 1991, 1994, 1996, 1997; Sjoerdsma and
Van der Zwaan, 1992; Linke and Lutze, 1993; Kaiho, 1994a, 1999a;
Jorissen et al., 1995; Bernhard, 1996; Bernhard and Sen Gupta,
1999; Jorissen, 1999; Loubere and Fariduddin, 1999). The micro-
habitat model of Jorissen et al. (1995) emphasizes the importance
of availability of oxygen and food in controlling the distribution
of benthic foraminifera in the sediment. For example, a high flux
of particulate organic matter (POM) stimulates benthic biomass
while at the same time creating increased oxygen stress at the
sediment–water interface or within interstitial pore waters. In
this way, taxa that live infaunally under oligotrophic to me-
sotrophic conditions may thrive at the sediment–water interface
under eutrophic conditions (Jorissen, 1999).

The movement of water masses across the shelf may vary
significantly from one season to the next, and it is these different

water masses, their particular physical and chemical characteris-
tics, and seasonal changes in productivity along water-mass
fronts that are important variables in controlling the distribution
and composition of benthic foraminiferal communities (e.g.,
Schnitker, 1994; Loubere and Fariduddin, 1999). POM is a major
food source for benthic foraminifera, and the flux of POM and
dissolved organic carbon (DOC) can greatly affect redox condi-
tions at the seafloor. The flux of POM from terrestrial and marine
sources is related to sediment input and the seasonal dynamics of
primary productivity in the overlying water column, respec-
tively. DOC is a staple for heterotrophic bacteria, which in turn
are an important food source for many species of benthic fora-
minifera (Lee, 1980; Lipps, 1983; Murray, 1991; Langer and
Gehring, 1993; Goldstein and Corliss, 1994; Goldstein, 1999).
Lipps (1983) suggested that DOC is utilized by benthic foramin-
ifera, especially in environments where the flux of terrestrial
and/or marine POM is limited, such as coral reefs and vast
stretches of the deep sea.

Taxa that live in epifaunal or shallow infaunal microhabitats
can be considered to be opportunists, because of their depen-
dence on the often intermittent flux of labile, easily metabolized
organic matter to the seafloor, whereas deeper infaunal organ-
isms could be considered specialist feeders because of their
dependence on the stable supply of more refractory, bacterially
mediated organic matter within the sediments (Jorissen, 1999).
Some deep-sea trochospirally coiled, calcareous benthic taxa
display a rapid response to the flux of organic matter associated
with the annual spring bloom (Gooday, 1988, 1993; Loubere and
Fariduddin, 1999). These opportunistic phytodetritus feeders
have also been recognized in Cenozoic deep-sea sediments (Tho-
mas and Gooday, 1996) and may be associated with lowstand
deposits of the mid-Cretaceous (Erbacher et al., 1998; Leckie et al.,
1998; West et al., 1998).

Phleger and Soutar (1973) found large standing stocks of
benthic foraminifera associated with shallow (75–400 m) oxy-
gen minima along the Pacific margin of California and Central
America. The assemblages are characterized by low diversity
and high dominance of relatively small, thin-shelled calcareous
taxa (see also Bernhard, 1986; Perez-Cruz and Machain-Castillo,
1990; Kaiho, 1994a, 1999a). The rate of oxygen consumption by
benthic foraminifera increases markedly with increasing size
above ~ 250 µm maximum diameter (Bradshaw, 1961). Phleger
and Soutar (1973), however, estimated that the yearly consump-
tion of oxygen by benthic foraminifera in the Santa Barbara
Basin was a small fraction (~ 3.5%) of the total flux of oxygen into
the basin. Therefore, they concluded that the large standing
stocks of benthic foraminifera were not limited by the availabil-
ity of oxygen. In addition, these authors suggested that high
abundances of relatively small specimens may be the conse-
quence of early reproduction under optimal conditions of abun-
dant food supply due to high productivity in the surface waters
(Phleger and Soutar, 1973). Large living benthic populations are
primarily the result of an abundant food supply from the photic
zone (Phleger and Soutar, 1973; Diester-Haass, 1978; Berger and
Diester-Haass, 1988; Herguera and Berger, 1991; Loubere, 1994,
1996; Loubere and Fariduddin, 1999).

Taxa that live infaunally under oxic to weakly dysoxic condi-
tions tend to live epifaunally and dominate assemblages under
dysoxic to anoxic conditions (e.g., Corliss, 1985, 1991; Corliss and
Chen, 1988; Corliss and Emerson, 1990; Kaiho, 1994a, b, 1999a;
Jorissen et al, 1995; Bernhard and Sen Gupta, 1999; Jorissen, 1999).
Taxa indicative of low oxygen indices include elongate–flat-
tened, tapered, and cylindrical morphotypes with small, thin-
walled tests and weak ornamentation (Kaiho, 1994a, 1999b). Taxa
with similar characteristics are also associated with ancient dysoxic
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to anoxic sediments (e.g., Berhard, 1986; Koutsoukos and Hart,
1990; Koutsoukos et al., 1990; Kaiho, 1994b; Erbacher et al., 1998;
Ehrbacher et al., 1999; Leckie et al., 1998; West et al., 1998;
Holbourn et al., 2001).

Differentiation of microhabitats can be used to interpret
sea-level changes, climate variations, and associated trends.
For example, in the Pleistocene of the Gulf of Mexico large
numbers of traditionally infaunal morphotypes, such as
uvigerinids and bolivinids, may indicate bottom-water dysoxia
and suggest a mechanism for increased water-column stratifi-
cation via an intensified salinity gradient resulting from in-
creased input of glacial meltwater (low δ18O values in planktic
foraminiferal tests; Moss and Olson, in prep.). By examining
microhabitat trends, Kaiho (1999a, 1999b) found a strong cor-
relation between test size of the largest trochospirally coiled
calcareous benthic foraminiferal taxa (presumed epifaunal
morphotypes), and both deep-water temperature and dis-
solved oxygen; minimum sizes correlate with warm (δ18O
minima), oxygen-poor, deep waters.

MICROFOSSILS AND SEQUENCE STRATIGRAPHY

In the late 1970s, studies in sequence stratigraphy began to
suggest that seismic profiles of subsurface rock units had the
potential to image genetically related stratal units bounded by
unconformities or their correlative conformities (Vail et al.,
1977). Subsequently, these various stratigraphic discontinui-
ties, whether defined using seismic data, well logs, or core and
outcrops, have been related to sea-level changes, in part, on the
microfossil assemblages retrieved from the stratigraphic record
(e.g., Armentrout and Clement 1990; Zellers, 1995; Armentrout,
1996; Thompson and Abbott, this volume; Olson and Thomp-
son, in prep.). Because the sequence boundary is commonly
accompanied by subaerial exposure and downcutting, the mag-
nitude of the hiatus may be large near the continental shelf; as
the hiatus is traced into the basin, however, less section is
missing, and where the duration of a hiatus is minimal, the
missing section eventually falls within a single biozone and is
extremely difficult to identify (Powell, 1992). In such cases,
other techniques (e.g., diversity values, Wakefield, this volume;
stratigraphic similarity curves, Olson et al., this volume), rather
than missing biozones, may be important in identifying candi-
date sequence boundaries.

A sequence stratigraphic model of predicted microfossil
trends is presented in Fig. 3. These are general trends that apply
primarily to siliciclastic shelves, although a number of features
are likely to be developed in mixed siliciclastic–carbonate and
carbonate-dominated depositional systems as well. It is likely
that only a subset of these characteristics is preserved in any
given neritic stratigraphic sequence, thereby illustrating the
importance of integrating a variety of biostratigraphic data
(e.g., foraminifera, calcareous nannofossils, pollen, spores, di-
noflagellates) with sedimentology, geochemistry, well-log data,
seismic stratigraphy, and stratal architecture (e.g., Van Wag-
oner et al., 1988; Emery and Myers, 1996). Microfossil patterns
often associated with sequence boundaries include (Olson and
Thompson, in prep.): (1) the abrupt truncation or diminution of
marine microfossil abundance and/or diversity at the horizon
(e.g., foraminifera, nannofossils, dinoflagellates; McCarthy et
al., this volume, Wakefield, this volume), (2) an overlying in-
crease in terrestrial pollen and spores (e.g., McCarthy et al., this
volume), (3) overlying microfossils indicating cooler climate
and/or shallower bathymetry (e.g., Li et al., this volume), (4) an
overlying decrease in the p:b ratio, and (5) an overlying increase
in reworked microfossils (e.g., McCarthy et al., this volume)

FIG. 3.—Summary of microfossil and sediment assemblage char-
acteristics of key stratigraphic surfaces and systems tracts.
Only a subset of these characteristics is likely to be preserved
in any given neritic stratigraphic sequence, thereby illustrat-
ing the importance of integrating biostratigraphic data with
sedimentology, geochemistry, well-log data, seismic stratig-
raphy, and stratal architecture analysis. See Figure 1 for
explanation of symbols.

Sequence Boundary (SB)

  marked shift to microfossil-poor or barren sands
  rapid shallowing (based on benthic foraminiferal paleobathymetry)
  recycled and/or oxidized palynomorphs (dinocysts, pollen)
  evidence for erosional truncation at sharp lithologic contact

Highstand Systems Tract (HST)

prograding shoreline

 increased sedimentation rates (dilution of microbiota)
  increased runoff, nutrient supply, and productivity
  downslope transport of neritic microfossils
  may show (sporadic) dominance of epifaunal benthic foraminifera
  upward increase in grain size and increase in detrital minerals
  upward increase in pollen:dinocyst ratio
  upward decrease in microfossil abundances
  upward decrease in relative abundance of planktic foraminifera and
    calcareous nannoplankton (decrease in planktic:benthic ratio)
  upward decrease in carbonate content
  shoaling upward trend (based on benthic foraminiferal paleobathymetry)

Maximum Flooding Surface (MFS)

 fine-grained deposit (may be rich in total organic carbon and/or glauconite)
  may be associated with incursion of an oxygen minimum zone
  peak abundances of planktic foraminifera, calcareous nannoplankton, and
    dinocysts
  dominance of infaunal, low oxygen-tolerant benthic foraminifera
  change from deepening upward to shoaling upward trend
    associated with condensed section offshore

peak transgression

Transgressive Systems Tract (TST)

retreating shoreline,
coastal plain flooding,
river valley drowning

 decreased sedimentation rates (clastics trapped in estuaries and coastal
    environments/outer shelf and upper slope become sediment-starved)
  increased marine microfossil abundances
  may be associated with glauconite
  reworking of neritic microfossils and sediment
  infaunal and epifaunal benthic foraminifera
  upward decrease in grain size and decrease in detrital minerals
  upward decrease in pollen:dinocyst ratio
  upward increase in relative abundance of planktic foraminifera and
    calcareous nannoplankton (increase in planktic:benthic ratio)
  upward increase in carbonate content
  deepening upward trend (based on benthic foraminiferal paleobathymetry)

Transgressive Surface (TS)

 marked increase in marine microfossils (benthic foraminifera, dinocysts)
  rapid deepening (based on benthic foraminiferal paleobathymetry)
  may be associated with concentrations of shell and/or phosphatic bone
    and teeth (transgressive lag)
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derived from older strata sourced either from the hinterland (by
rivers) or the slope (by slumping).

These unconformity-bounded sequences consist of systems
tracts “defined by their position within the sequence and by the
stacking patterns of parasequence sets” (Van Wagoner et al.,
1988, p. 39). The transgressive systems tract (TST) is bounded by
the transgressive surface (TS) or sequence boundary (SB) below
and by the maximum flooding surface (MFS) above. The MFS is
frequently associated with condensed section deposited during
peak transgression (Loutit et al., 1988; Posamentier et al., 1988;
Mancini and Tew, 1997). The highstand systems tract (HST) is
bounded above by the lowstand systems tract or the SB. Parase-
quences and parasequence sets are the building blocks of the
systems tracts that make up a sequence (Van Wagoner et al.,
1988). Parasequences are bounded by marine flooding surfaces.
The TST typically consists of a retrogradational parasequence set,
whereas the HST consists of an aggradational to progradational
parasequence set.

An alternate approach is to utilize maximum flooding sur-
faces to delineate genetic sequence boundaries (Galloway, 1989a,
1989b). Genetic sequence stratigraphy is a very useful tool when
utilizing biostratigraphic data because flooding events are often
more easily recognized in fossiliferous mud-dominated lithofa-
cies, whereas erosional (unconformable) sequence boundaries
are more easily recognized in poorly fossiliferous, sand-domi-
nated lithofacies (Mancini and Tew, 1995, 1997; Armentrout,
1996; Fang, this volume; Tibert et al., this volume). Microfossil
patterns often associated with flooding surfaces include (Olson
and Thompson, in prep.): (1) a pulse of deep-water benthic
microfossils and maximum paleobathymetry (Armentrout,
1996), (2) maximum incursion into shelf regions of planktic
foraminifera, nannofossils, and dinoflagellates (e.g. McCarthy
et al., this volume; Tibert et al., this volume), (3) tops of various
rare taxa because shallow-water ecology following the flooding
surface excludes taxa from the area or because increased clastic
detritus dilutes the abundance too much to find specimens, (4)
sharp decrease in terrestrial pollen and spores compared to
marine palynomorphs (McCarthy et al., this volume), (5) mini-
mum in reworked microfossils, and (6) sharp increase in p:b
ratio (Fig. 3). Foraminiferal number is typically greatest at the
maximum flooding surface and lowest at the sequence bound-
ary (e.g., Gräfe, 1999; Gräfe and Wendler, this volume).
Planktic:benthic ratios may display a similar trend unless (cy-
clic) change in productivity of calcareous plankton is a domi-
nant component of the sediment supply, in which case the p:b
ratio is largely independent of the systems tract (Leary and
Hart, 1992; Gräfe, 1999).

SUMMARY

1. Mesozoic–Cenozoic siliciclastic and mixed siliciclastic–car-
bonate continental margins, as well as epicontinental seas,
typically yield diagnostic biofacies because of the dynamic
interplay of seasonal changes in temperature and salinity,
sedimentation and turbidity, and water-mass structure and
productivity with increasing water depth and distance from
the shore. Data on foraminiferal distribution and abundance
are used to establish a diverse suite of paleoenvironmental
proxies, many of which yield qualitative or quantitative
information about water depth or changes in relative sea
level. Modern foraminiferal distributions across a siliciclastic
margin (e.g., Poag, 1981; Culver, 1988) suggest that four
biofacies (or “depth zones”) may be particularly useful in
tracking ancient sea level based on major changes in genus-
level dominance with increasing depth and distance from

the shoreline. These biofacies are (1) marginal marine
(marsh–estuarine–lagoon–bay), (2) inner to middle neritic
(to ~ 100 m water depth), (3) outer neritic (~ 100 m to 150–
200 m), and (4) upper bathyal biofacies (> 150–200 m).

2. Foraminiferal biofacies and biotopes can be delineated using
R-mode and Q-mode cluster analysis, respectively.
Planktic:benthic (p:b) ratios provide reliable inferences about
paleodepth. Infaunal:epifaunal ratios of benthic foraminifera
are useful proxies for oxygen content and food supply, both of
which may vary with rising and falling sea level. Abrupt
changes in diversity indices [S, H(S), SHE] and/or similarity
coefficient mark changes in relative sea level.

3. Sediment assemblages of foraminifera, attendant biogenic
and mineral grains, and other sedimentological and geochemi-
cal characteristics collectively provide powerful proxies for
the delineation and interpretation of sequence stratigraphic
architecture. Diagnostic features of transgressive systems
tracts (TST) and highstand systems tracts (HST) include chang-
ing p:b ratios, benthic foraminiferal biofacies, grain size,
carbonate content, sedimentation rate, and microfossil re-
working. Flooding surfaces, useful in the delineation of
parasequences, are recognized by the rapid influx of marine
taxa or abrupt increase in deeper-water benthic and/or planktic
foraminifera, whereas maximum flooding surfaces, indica-
tive of peak transgression, are characterized by a peak p:b
ratio, peak in foraminiferal number, and concentrations of
glauconite, total organic carbon, and/or pyrite.
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